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Abstract—Image segmentation is crucial in computer vision, 

enabling tasks like object recognition and autonomous 

navigation. K-means clustering, a popular technique, is used for 

segmentation, but evaluating its quality remains challenging. 

This study investigates the effectiveness of silhouette score, a 

common metric, for K-means clustering in image segmentation 

compared to other algorithms. We segment a complex fruit image 

using K-means and calculate the silhouette score. We then 

compare K-means to other segmentation algorithms (DBScan, 

EM, Mean Shift) using silhouette score and assess statistical 

significance. Additionally, we explore how silhouette score 

compares to other established metrics for K-means clustering. By 

employing a single image and multiple algorithms, this study 

aims to provide insights into the usefulness of silhouette score for 

K-means clustering in image segmentation, its limitations

compared to other algorithms, and its value against other K-

means specific metrics. This research contributes to the

exploration of evaluation metrics for image segmentation

algorithms, focusing on the utility and limitations of silhouette

score for K-means clustering.

Keywords—Image Segmentation ; K-means Clustering ;

Silhouette Score;

I. INTRODUCTION

Image segmentation plays a critical role in computer vision, 

enabling tasks like object recognition, medical image analysis, 

and autonomous vehicle navigation. It involves partitioning an 

image into meaningful regions corresponding to distinct 

objects or features. 

K-means clustering, a popular unsupervised learning technique,

finds widespread application in image segmentation. However,

effectively evaluating the quality of K-means clustering for this

purpose remains a challenge. The silhouette score is a

commonly used metric, measuring the cohesion within clusters

and separation between clusters to assess clustering quality.

This study investigates the effectiveness of silhouette score in

evaluating K-means clustering for image segmentation

compared to other algorithms. We explore this by segmenting a

complex image containing diverse fruits with varying colors

using K-means clustering. We then calculate the silhouette

score for the resulting segmentation.

To gain broader insights, we compare the performance of K-

means clustering with other image segmentation algorithms,

including DBScan, Expectation-Maximization (EM), and Mean

Shift. We evaluate each algorithm using silhouette score and

assess the statistical significance of observed score differences.

Additionally, we explore how silhouette score compares to 

other established evaluation metrics specifically for K-means 

clustering, such as: 

• Silhouette Score: Measures cluster cohesion and separation.

• Gap Statistic: Assesses clustering structure against random

labeling.

• Calinski-Harabasz Index: Evaluates the balance between

inter-cluster and intra-cluster variance.

• Davies-Bouldin Index: Quantifies clustering quality based

on cluster similarity and separation.

By employing a single image with rich color variations and 
multiple segmentation algorithms, this study aims to provide 
valuable insights into: 

• Effectiveness of silhouette score in evaluating K-means
clustering for image segmentation compared to other
algorithms.

• Comparative performance of K-means clustering against
other segmentation techniques based on silhouette score
and potential limitations of using silhouette score alone.

• Evaluation of silhouette score against other metrics
specifically for K-means clustering performance
assessment.

This research contributes to the ongoing exploration of 
evaluation metrics for image segmentation algorithms, 
particularly focusing on the utility and limitations of silhouette 
score for K-means clustering. 

II. LITERATURE REVIEW

Image segmentation is a fundamental task in computer vision, 

playing a pivotal role in various applications such as object 

recognition, medical image analysis, and autonomous vehicle 

navigation  [8].The process involves partitioning an image into 

meaningful regions corresponding to distinct objects or 

features, thereby facilitating subsequent analysis and 

interpretation. 

K-Means Clustering in Image Segmentation

K-means clustering, a popular unsupervised learning technique,

has found widespread application in image segmentation due to

its simplicity and efficiency  [1]. By iteratively partitioning

data into K clusters based on feature similarity, K-means

clustering effectively separates objects or regions with similar
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characteristics. However, effectively evaluating the quality of 

K-means clustering for image segmentation remains a

challenge.

Evaluation Metrics 

Several metrics have been proposed to assess the quality of 

clustering results. One commonly used metric is the silhouette 

score, which measures the cohesion within clusters and 

separation between clusters[10]. The silhouette score provides 

a quantitative measure of clustering effectiveness, with higher 

scores indicating better-defined and well-separated clusters. 

In addition to silhouette score, other evaluation metrics have 

been proposed specifically for K-means clustering: 

• Gap Statistic: This metric compares the within-cluster

dispersion to that expected under a null reference

distribution, providing insights into the optimal number of

clusters [9].

• Calinski-Harabasz Index: Also known as the Variance

Ratio Criterion, this index evaluates the balance between

inter-cluster and intra-cluster variance, with higher values

indicating better clustering [3].

• Davies-Bouldin Index: This metric quantifies clustering

quality by considering both cluster similarity and

separation, offering a comprehensive assessment of

clustering performance  [5].

Comparative Studies 

Several studies have investigated the effectiveness of silhouette 

score and other evaluation metrics in assessing K-means 

clustering for image segmentation. For example,  [2] compared 

the performance of silhouette score, gap statistic, and Calinski-

Harabasz index in evaluating K-means clustering on various 

datasets. Their findings highlighted the complementary nature 

of these metrics and emphasized the importance of considering 

multiple criteria for robust evaluation. 

Alternative Segmentation Algorithms 

While K-means clustering remains popular, alternative 

segmentation algorithms have also been proposed to address its 

limitations. Density-based clustering algorithms such as 

DBScan offer advantages in handling irregularly shaped 

clusters and varying cluster densities  [7]. Expectation-

Maximization (EM) algorithm, based on Gaussian mixture 

models, provides a probabilistic framework for clustering data 

with underlying statistical distributions  [6]. Mean Shift 

algorithm, on the other hand, offers a non-parametric approach 

for mode-seeking clustering, making it suitable for applications 

with unknown cluster shapes and sizes  [4]. 

Research Gap and Objectives 

Despite the extensive research on evaluation metrics for image 

segmentation, there is a lack of comprehensive studies 

comparing the effectiveness of silhouette score and other 

metrics in assessing K-means clustering specifically for image 

segmentation tasks. This study aims to address this gap by: 

1. Investigating the effectiveness of silhouette score in

evaluating K-means clustering for image segmentation

compared to other algorithms.

2. Comparing the performance of K-means clustering against

alternative segmentation techniques based on silhouette

score and other established metrics.

3. Evaluating the utility and limitations of silhouette score

against other metrics specifically designed for assessing K-

means clustering performance.

III. METHODOLOGY

1. Image Selection and Preprocessing

• Image Selection: A complex image containing

diverse fruits with varying colors was selected to

serve as the basis for segmentation.

• Preprocessing: The selected image underwent

preprocessing steps including resizing, noise

reduction, and color space conversion to ensure

optimal input for segmentation algorithms.

2. K-Means Clustering

• Implementation: The K-means clustering

algorithm was applied to segment the image into

distinct clusters based on color similarity.

• Parameter Tuning: Experimentation with K

values ranging from 3 to 10 was conducted to

determine the optimal number of clusters.

• Silhouette Score Calculation: The silhouette score

was computed for each segmentation to assess the

quality of clustering.

3. Evaluation Metrics for K-Means Clustering
• Gap Statistic: The gap statistic was calculated to

assess the clustering structure against random

labeling.

• Davies-Bouldin Index: Clustering quality was

quantified using the Davies-Bouldin index, which

considers both cluster similarity and separation.

• Calinski-Harabasz Index: The balance between

inter-cluster and intra-cluster variance was

evaluated using the Calinski-Harabasz index.

4. Alternative Segmentation Algorithms
• DBScan: The DBScan algorithm was 

implemented for density-based clustering.

• Expectation-Maximization (EM): The EM

algorithm was utilized for Gaussian mixture

model-based clustering.

• Mean Shift: The Mean Shift algorithm was

applied for mode-seeking clustering.

5. Silhouette Score Comparison
• Silhouette Score Calculation: Silhouette scores

were computed for segmentations generated by

DBScan, EM, and Mean Shift algorithms.

• Statistical Analysis: The statistical significance of

differences in silhouette scores between K-means

clustering and alternative algorithms was

assessed.

• Comparative Performance: The performance of

K-means clustering was compared against other

segmentation techniques based on silhouette

score.
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6. Evaluation of Other Metrics

• Comparison: The effectiveness of silhouette score

against other metrics specifically for assessing K-

means clustering performance was evaluated.

• Limitations: Potential limitations of using

silhouette score alone for evaluating K-means

clustering were identified and discussed.

7. Data Analysis

• Quantitative Analysis: The computed metrics

were analyzed to draw conclusions about the

effectiveness of silhouette score in evaluating K-

means clustering for image segmentation.

• Interpretation: The results were interpreted in the

context of the research objectives and hypotheses.

8. Conclusion

• Summary: The findings regarding the

effectiveness of silhouette score and other metrics

for evaluating K-means clustering in image

segmentation were summarized.

• Implications: The implications of the research

findings were discussed, and directions for future

studies were suggested.

IV. RESULTS AND DISCUSSION

A. K-means Analysis for Image Segmentation

This section presents the findings of K-means clustering 

applied for image segmentation. Our research investigated the 

effectiveness of K-means in segmenting the image "zurag.jpg". 

We aimed to identify the optimal number of clusters (k) for this 

purpose. K-means clustering was performed with a range of k 

values (3 to 10) to assess the impact on segmentation results. 

Fig.2. Segmented Image (k=6, Silhouette Score: 0.740) 

1) Visualizing Segmentation and Selecting K Clusters
Visual outcomes of K-means clustering for image
segmentation. silhouette score analysis informed the
selection of two potential k values:

• K = 6: This value yielded a high silhouette score

(0.74), indicating well-separated clusters based on the

evaluation metric. This suggests a good balance

between intra-cluster similarity and inter-cluster

dissimilarity.

• K = 8: While the silhouette score for K = 8 was slightly

lower (0.70), visual inspection suggested potential

benefits. K = 8 might provide a more detailed

segmentation, capturing subtle color variations or

textures within the fruit that might be missed with

fewer clusters.

Representative Examples: 

To illustrate the effectiveness of K-means clustering, we 

present segmented images for both k values (6 and 8 clusters) 

alongside the original image (figures not shown here). 

• Figure 2 (K=6): Color-coded regions represent distinct

segments identified within the fruit based on K-means

clustering (k = 6). This segmentation provides a clear

separation of major color regions.

• Figure  3  (K=8): In contrast, Figure 4.7 showcases the

segmentation results with k = 8. This configuration achieves

a more granular segmentation, potentially capturing subtle

variations that might be missed with fewer clusters.

Discussion: Balancing Separation and Detail 

The choice between K=6 and K=8 ultimately depends on the 

desired level of detail for the segmentation and the trade-off 

with the silhouette score. While K = 6 offers a good balance 

between well-separated clusters and interpretability, K = 8 

might be more suitable for applications requiring a more 

precise segmentation of specific features within the image, 

even if it comes at the expense of a lower silhouette score. 

Fig.1. Original image  

Fig.3. Segmented Image (k=8, Silhouette Score: 0.703) 
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2) 1.3 Silhouette Score Analysis

 

Figure 4 presents the silhouette score analysis for image 
segmentation of "zurag.jpg" using K-means clustering. The 
analysis identified k = 6 as the value with the highest silhouette 
score (0.740). 

a) Interpretation of Silhouette Score:

The silhouette score ranges from -1 to 1. Values closer to 1 
indicate better average separation between clusters. A score of 
0 suggests indifferent cluster assignments, and negative values 
imply poor separation. In this case, a silhouette score of 0.740 
for k = 6 signifies a relatively good separation between the 
clusters generated by K-means clustering. 

b) Potential Effectiveness for "zurag.jpg" Segmentation

Given the highest silhouette score among the evaluated k 
values, k = 6 corresponds to a segmentation outcome where 
clusters are well-separated on average. This suggests that for 
the specific image "zurag.jpg," K-means clustering with k = 6 
might be the most effective configuration in terms of achieving 
distinct and well-defined clusters. 

c) Important Considerations:

While the silhouette score suggests k = 6 as a promising value, 
some additional factors are crucial: 

• Limitations of Silhouette Score: The silhouette score
focuses on both intra-cluster cohesion and inter-cluster
separation. However, it might not explicitly capture other
aspects of segmentation quality, such as boundary detection
accuracy or object detail preservation.

• Visual Inspection: Complementing the silhouette score with
visual inspection of the segmented image for k = 6 is
important. This can help assess whether the clusters visually
correspond to meaningful objects or regions within the
image.

• Alternative Evaluation Metrics: Utilizing other evaluation
metrics alongside the silhouette score, such as the Calinski-
Harabasz Index or Gap Statistic, can provide a more
comprehensive perspective on the segmentation quality.
These metrics might emphasize different aspects of cluster
separation or within-cluster cohesion, potentially suggesting
alternative optimal k values.

By considering these additional factors and potentially 
incorporating other evaluation metrics, a more nuanced 
understanding of the effectiveness of K-means clustering with 
k = 6 for segmenting "zurag.jpg" can be achieved. 

3) Comparison with Other Evaluation Metrics
While visual analysis provides initial insights, a more 
comprehensive evaluation necessitates additional metrics 
(Figures shown here). 

Fig.4. Silhouette Scores vs Number of Clusters 

Fig.5. Calinski-Haraba sz Scores vs Number of Clusters 

Fig.6. Gap Static vs Number of Clusters 

Fig.7. Davies-Bouldin vs Number of Clusters 
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4) K-means and Color Variations:
Setting k=8 appears more effective than k=6 in capturing color
variations within objects like fruits. This is evident in the
segmentation results, where K=8 might better preserve subtle
color differences. For instance, some fruits might exhibit
variations in ripeness or sun exposure reflected in their
segmentation. With K=8, these variations seem to be captured
more effectively.

a) Limitations of Visual Assessment:

Relying solely on visual inspection has limitations: 

• Compressed Image Size: Compressed images might affect
the clarity of color representation, making it difficult to
distinguish subtle color variations within clusters.
Analyzing the segmentation results on the original image
would provide a more accurate assessment.

• Human Perception and Subjectivity: Visual assessment can
be subjective. While observing clusters corresponding to
distinct objects is encouraging, a quantitative evaluation
metric is essential for a more objective assessment.

b) Beyond Visual Inspection: Utilizing Evaluation

Metrics 

To gain a more comprehensive understanding of the optimal k 
value, we investigated additional metrics: 

• Gap Statistic: Identified k=9 as optimal. It compares the
within-cluster variance of the chosen k-means clustering
solution to the expected variance under a null hypothesis of
random labeling. A higher Gap Statistic value suggests a
better separation between clusters.

• Calinski-Harabasz Index: Suggested k=8 as optimal. This
metric considers both inter-cluster variance (separation
between clusters) and intra-cluster variance (cohesion
within clusters). A higher Calinski-Harabasz Index
indicates a better balance between these two factors.

• Davies-Bouldin Index: for 𝑘=3, the score was 0.845; for
k=7, it was 0.720; for k=8, the score achieved was 0.905;
and for k=9, the score was 0.715. These scores denote the
relative effectiveness of the clustering solutions, with lower
scores suggesting more optimal clustering configurations.

c) Discrepancies and Importance of Multiple Metrics:

The discrepancies between the optimal k values suggested by 

different metrics highlight the potential shortcomings of using 

a single metric. Each metric has its own assumptions and 

focuses on specific aspects of segmentation quality. Relying 

solely on one metric might lead to suboptimal results. 

By considering the combined insights from visual analysis and 

a range of evaluation metrics, we can develop a more nuanced 

understanding of the effectiveness of K-means clustering and 

the optimal number of clusters (k) for this specific image 

segmentation task. 

5) Factors Influencing Metric Choice
Different evaluation metrics provide valuable insights but 
emphasize distinct aspects of cluster quality. Understanding 
these nuances is crucial for selecting the most appropriate 
metric for a specific image segmentation task. 

a) Focus of Evaluation Metrics:

• Silhouette Score: Focuses on within-cluster cohesion,
measuring data point similarity within a cluster. A high
score indicates well-grouped data points with a high degree
of similarity. However, it might not explicitly consider the
separation between clusters.

• Gap Statistic and Calinski-Harabasz Index: Prioritize
between-cluster separation. The Gap Statistic compares the
within-cluster variance to a null hypothesis, while the
Calinski-Harabasz Index considers both inter-cluster and
intra-cluster variance.

b) Choosing the Right Metric for the Task:

The choice of the most suitable metric can be influenced by 
several factors: 

• Specific Image Characteristics: Images with subtle color
variations within objects might require a metric that
emphasizes within-cluster similarity to a lesser degree.

• Desired Outcome of Segmentation: The specific goal of the
image segmentation task should also be considered. If the
primary objective is to achieve well-defined clusters with
minimal overlap, metrics like the Gap Statistic or Calinski-
Harabasz Index might be more appropriate.

c) Illustrative Example: Segmenting Fruits

Consider segmenting fruits within an image. Here's how the 
choice of metric can be guided by the research objective: 

• Preserving Color Variations: If the goal is to preserve
subtle color variations within individual fruits, a metric like
silhouette score that emphasizes within-cluster cohesion
might be less suitable.

• Separating Distinct Fruit Types: If the aim is to
differentiate between distinct fruit types, metrics like the
Gap Statistic or Calinski-Harabasz Index might be more
appropriate.

This example highlights the importance of considering the 
research objective when choosing an evaluation metric. The 
same principles can be applied to other image segmentation 
tasks. 

6) Future Work
The current study provides valuable insights into applying K-
means clustering for image segmentation using a single image. 
However, to gain a more comprehensive understanding and 
validate the findings, several future research directions can be 
explored: 

• Expanding the Dataset: Utilizing a broader dataset of

images with varying complexities would be highly

beneficial. This dataset could encompass a wider

range of objects relevant to the research question (e.g.,

different types of fruits in various lighting conditions)

or images with cluttered backgrounds. Evaluating K-
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means clustering performance and the effectiveness of 

different evaluation metrics across this diverse dataset 

would provide more robust and generalizable results. 

• Incorporating Ground Truth Data: Quantitative

evaluation metrics based on ground truth

segmentation data could further validate the choice of

the optimal k value. Ground truth data refers to

manually segmented images where each pixel is

labelled with its corresponding object class. By

comparing the K-means segmentation results with the

ground truth data, metrics like precision, recall, and

Jaccard Index can be calculated. These metrics

provide a more objective measure of segmentation

accuracy, complementing the insights from other

evaluation metrics.

• Additional Considerations:

o Computational Considerations: As the

dataset size increases, the computational cost

of K-means clustering can become a factor.

Exploring alternative initialization methods

for K-means, such as K-means++, or

investigating distributed computing

approaches could be crucial for handling

larger datasets efficiently.

o Incorporating Domain Knowledge: Incorporating 

domain 

knowledge specific to the objects of interest (e.g., fruit 

types) could potentially enhance the segmentation 

process. This might involve feature engineering 

techniques to extract relevant features from the 

images that are more informative for segmentation. 

o Alternative Clustering Algorithms: While K-means 

clustering has been the focus of this research, 

exploring other clustering algorithms like 

hierarchical clustering, DBSCAN, or spectral 

clustering could be valuable. Each algorithm 

has its own strengths and weaknesses, and 

investigating their suitability for specific 

image segmentation tasks within the chosen domain 
would be a worthwhile direction for future work.

By addressing these future research directions, 
a more comprehensive understanding of K-means 
clustering and its effectiveness for image 
segmentation can be achieved. Additionally, 
exploring alternative approaches and 
incorporating domain knowledge can lead to 
further advancements in this field. 

B. EM (Expectation-Maximization) Results

 

 

brief description of the EM segmentation results based on the 

figures 

EM clustering identified k=3 as the optimal number of clusters 

based on silhouette score (0.532). However, visual inspection 

suggested k=8 might provide a more meaningful segmentation 

despite a lower score. This highlights the importance of 

considering both quantitative metrics and qualitative 

assessment for cluster selection. 

1) 1.3 K-means vs. EM Silhouette Score (Figure shown here) 

 

This section explores the performance comparison between K-

means clustering and the Expectation-Maximization (EM) 

algorithm for image segmentation. Both methods are prevalent 

in unsupervised learning tasks, but they have distinct 

characteristics that influence their suitability for specific 

scenarios. 

Fig.8. Segmented Image (EM, K=3, Silhouette Score: 0.532) 
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Fig.9. Segmented Image (EM, K=8, Silhouette Score: 0.261) 

Fig.10. Silhouette Scores (KMeans vs Expectation and Maximization) 
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a) Key Differences and Suitability

• K-means: This method partitions data points into a
pre-defined number of clusters (K). It excels when
dealing with well-separated, spherical clusters. K-
means is generally computationally efficient due to its
simplicity.

• EM: This probabilistic approach models data as a
mixture of distributions. It can handle overlapping
clusters and clusters of different shapes but requires
more computational resources compared to K-means.
EM also involves selecting and initializing model
parameters, which can affect the results.

b) Silhouette Score Comparison

The analysis revealed that the silhouette score obtained with K-
means clustering was higher compared to the score from EM 
for our image segmentation task. This suggests that K-means 
achieved a better separation between clusters in our specific 
dataset. 

c) Explanation for Lower EM Score

There are a few potential reasons why the EM silhouette score 
might be lower in this case: 

• Data Complexity: If our image data exhibits

overlapping regions or clusters with irregular shapes,

K-means might perform better due to its simpler

structure. EM might struggle to model such

complexities accurately, leading to a lower silhouette

score.

• Number of Clusters (K): The optimal K value for K-

means might correspond well to the underlying

structure of the data. Choosing the appropriate

number of components in the EM model can be more

challenging, potentially affecting the separation

between clusters.

d) Implications for Our Dataset

Based on the higher silhouette score, K-means appears to be a 

more suitable choice for our specific image segmentation task. 

This suggests that the data likely consists of well-defined, 

non-overlapping clusters that K-means can effectively capture 

C. DBSCAN for Image Segmentation

This section introduces Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), a clustering algorithm 
used for image segmentation. Unlike K-means, which requires 
pre-defined cluster numbers, DBSCAN discovers clusters of 
varying shapes and sizes while handling noise effectively. 

Core Concepts: 

• Density-Based Clustering: DBSCAN identifies

clusters based on data point density in a spatial space

(often representing image pixel color). Points with

many neighbors within a specified radius are

considered core points, forming the foundation of

clusters. Points with fewer neighbors are classified as

border points (on cluster fringes) or noise points

(isolated or in low-density regions).

• Parameters:

o Epsilon (Epsilon): This defines the

neighborhood radius around a point. A larger

Epsilon allows for larger clusters and

potentially merges closer clusters.

o MinPts (minimum points): This is the

minimum number of neighbors required for a

point to be a core point.

• Clustering Process: DBSCAN iterates through each
data point:

o If it's a core point, it expands the cluster by

recursively checking its neighbors and their

neighbors (if core points), forming a dense

connected region.

o Border points are included in the cluster but

don't contribute to its expansion.

o Noise points are left unclustered.

Advantages: 

• Handles data with varying shapes and sizes.

• Effective noise and outlier detection.

• No pre-defined number of clusters required.

Disadvantages: 

• Sensitive to Epsilon and MinPts parameter selection.

• Can be computationally expensive for large datasets.

Applications: 

• Image segmentation

• Anomaly detection

• Customer segmentation

• Market research

 DBSCAN Results (Figures  shown here) 

 Fig.11. Segmented Image (Epsilon =0.5, Silhouette Score:0.379 

Fig.12. Segmented Image (Epsilon =2, Silhouette Score:0.153) 
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Three example images were included here to illustrate the 

findings. These images showcased the trade-off between 

silhouette score and visual quality for different k values in 

DBSCAN clustering. 

1) DBSCAN Silhouette Score Analysis (Figures shown here) 

This section explores the performance of DBSCAN compared 
to K-means clustering for image segmentation of a fruit image. 
Both are popular unsupervised learning techniques, but their 
characteristics make them suitable for different scenarios. 

a) DBSCAN vs. K-Means: Key Differences

• DBSCAN: Density-based clustering. Groups data

points based on color space density. No pre-defined

number of clusters needed. Handles varying shapes

and detects noise effectively. Sensitive to Epsilon and

MinPts parameters.

• K-Means: Partitive clustering. Divides data points into

a pre-specified number of clusters (K). Efficient for

well-separated, spherical clusters. Requires defining K

beforehand, which can be challenging.

b) Silhouette Score Comparison and Visual

The analysis of DBSCAN with varying Epsilon values revealed 

some key points: 

Table 1 

Number Epsilon Silhoutte 
Score 

observation 

1 0.5 0.379 
Captures fruit shapes, but 
some color detail is 
missing. 

2 2.0 0.153 

Overly large clusters, 
mainly captures fruit 
shapes with minimal color 
differentiation. 

3 5.0 0.325 

Shows some fruit shapes 
with partial color 
information, but 
incomplete. 

Visually, K-means clustering consistently produced more 

defined fruit shapes across different K values (3 to 10). 

Silhouette scores for K-Means also exceeded 0.7 in this range, 

indicating good cluster separation. 

c) Insights and Recommendations

Based on the results, K-means appears to be a better choice for 
this specific fruit image segmentation task for the following 
reasons: 

• Well-Defined Fruit Shapes: Visual observations

suggest distinct fruit shapes, which K-means handles

well.

• Higher Silhouette Scores: K-means consistently

achieved higher silhouette scores, indicating better

cluster separation compared to DBSCAN across

various Epsilon values.

• Challenges with DBSCAN: DBSCAN's sensitivity to

Epsilon makes it difficult to find an optimal

configuration for both capturing fruit shapes and color

variations within fruits.

d) Limitations of DBSCAN in this Case

While DBSCAN is a powerful algorithm, it might not be ideal 
for this specific scenario due to: 

• Color Details within Fruits: DBSCAN with a single

Epsilon might struggle to segment color variations

within fruits while maintaining separate cluster

boundaries for each fruit. A more complex approach

like hierarchical clustering or post-processing of

initial DBSCAN results might be necessary.

• Epsilon Parameter: Finding the optimal Epsilon value

for both shape and color segmentation can be

challenging. A small Epsilon might capture color

details but miss larger fruit shapes, while a larger

Epsilon might group entire fruits together, losing

color variations.

Fig.13. Segmented Image (Epsilon =5, Silhouette Score:0.325) 

Fig.14. Silhouette Scores vs Epsilon 

Observations 
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e) Conclusion

This experiment suggests that K-means clustering exhibited 
better performance based on visual observations and silhouette 
scores for segmenting fruits and capturing their shapes in the 
image. However, if preserving color details within fruits 
becomes a higher priority, exploring alternative techniques or 
parameter tuning for DBSCAN might be necessary. Here are 
some potential future directions: 

• Hierarchical Clustering: This approach could provide

a more fine-grained segmentation by iteratively

merging or splitting clusters based on a distance

threshold. It might be able to capture both color

variations and fruit shapes more effectively.

• Multi-threshold DBSCAN: Utilizing multiple Epsilon

values or a combination with other density measures

could potentially address the limitations of using a

single Epsilon in this case.

• Post-processing of DBSCAN Results: Techniques like

merging or splitting DBSCAN clusters based on

additional criteria spatial properties could help refine

the segmentation to achieve a better balance between

shape and color preservation.
By investigating these alternative approaches, future research 
can aim to achieve a more comprehensive fruit image 
segmentation that incorporates both the distinct shapes and the 
subtle color variations within the fruits. 

D. Mean Shift Algorithm for Image Segmentation

The Mean Shift algorithm is a non-parametric clustering 
technique well-suited for image segmentation tasks. Unlike K-
means, which requires pre-defined cluster numbers, Mean Shift 
iteratively moves data points (pixels) towards denser regions in 
the feature space, effectively discovering clusters of varying 
shapes and sizes  (Demirović, 2019). 

Core Principles 

• Feature Space Representation: Each pixel is 

represented by a feature vector, typically combining 

its spatial location (x, y) and intensity value. This 

allows the algorithm to consider both spatial 

proximity and color similarity when grouping pixels. 

• Kernel Density Estimation: A kernel function (often a

Gaussian) is centered on each data point. This

function estimates the local density of pixels in the

feature space, essentially capturing how many

neighboring pixels share similar locations and

intensities.

• Mean Shift Vector Calculation: The mean shift vector

for a data point is the average displacement of nearby

points within the kernel bandwidth (h). This vector

points towards the direction of higher density in the

feature space.

• Data Point Movement: Each data point is shifted in

the direction of its mean shift vector. This iterative

process effectively moves pixels towards denser

regions, grouping them with similar neighbors.

• Convergence: The process iterates until convergence

is achieved, where data points no longer experience

significant displacements due to minimal density 

variations in their vicinity. 

a) Image Segmentation with Mean Shift

After convergence, pixels that end up in the same high-density 
regions are considered to belong to the same segment (object) 
within the image. This approach allows Mean Shift to 
automatically determine the number of clusters based on the 
inherent data distribution, unlike K-means which requires pre-
defined cluster counts. 

 

brief description of the Mean Shift segmentation results based 

on the figure 

Mean Shift analysis revealed an interesting effect of 

incorporating spatial information. Including pixel location data 

(0.356 silhouette score) resulted in poorer cluster separation 

compared to excluding it (0.650 silhouette score). This 

suggests that for this specific fruit image segmentation task, 

spatial information might introduce noise or redundancy. The 

higher silhouette score without location data implies that 

density-based clustering, like Mean Shift, might be more 

effective for this type of image data. 

b) Silhouette Score Comparison

The Silhouette Score is a metric used to assess the quality of 
clustering. It considers how well each data point is assigned to 
its cluster compared to neighboring clusters. Here's how Mean 
Shift and K-means compare in terms of silhouette scores: 

Fig.15. Pixel with their location (21) colors, Mean-shift, Silhouette 

Score:0.356 

Fig.16. Pixel without their location (2 2) colors, Mean-shift, Silhouette 
Score:0.650 
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• Mean Shift: Due to its density-based approach, Mean

Shift can achieve higher silhouette scores for images 

with smooth transitions between objects. This is

because pixels along these transitions are more likely

to be pulled towards denser regions with their

neighbors, leading to better cluster separation.

• K-means: K-means might struggle with smooth

transitions, potentially leading to lower silhouette

scores. While K-means can be faster and

computationally less expensive, its rigid cluster

structure may not always capture the nuances of

gradual intensity changes between objects.

c) Strengths and Weaknesses

Mean Shift: 

• Strengths: Handles clusters of variable shapes,

effective for smooth transitions between objects,

doesn't require pre-defined cluster numbers.

• Weaknesses: Computationally expensive, sensitive to

kernel bandwidth selection (h), may not perform well

with noisy images.

K-means:

• Strengths: Fast, simple to implement, performs well

with distinct, well-separated clusters.

• Weaknesses: Requires pre-defined cluster numbers,

struggles with non-spherical clusters and smooth

transitions.

d) Choosing Between Mean Shift and K-means

For image segmentation tasks involving smooth transitions and 
potentially unknown numbers of objects, Mean Shift might be 
the better choice despite its higher computational cost. K-
means is a good alternative for scenarios requiring faster 
processing and well-defined clusters. In practice, evaluating 
both approaches on your specific image data is recommended 
to determine the most suitable method for your application. 

E. Comparison of Clustering Algorithms for Image

Segmentation

This section compares the performance of four clustering 
algorithms commonly used for image segmentation: K-means, 
Mean Shift, Expectation-Maximization (EM), and DBSCAN. 
While all are valuable unsupervised learning techniques, their 
approaches differ, leading to varying results on our image 
segmentation task. 

1) Silhouette Score Analysis
We evaluated the performance of each algorithm using the 
silhouette score, which measures the separation between 
clusters. Here's a summary of the results: 

K-means: Silhouette scores consistently exceeded 0.7 across all
K values between 3 and 10.

Mean Shift: 

• Including location information: Score =

0.356 (21 colors)

• Excluding location information: Score =

0.650 (22 colors)

EM: Silhouette scores ranged from 0.2 to 0.5 across 

all K values between 3 and 10. 

DBSCAN: (Discussed previously) Scores varied with 

the epsilon value (0.029 to 0.379). Visually, some 

epsilon values captured fruit shapes well but missed 

color details, while others struggled with clear fruit 

boundaries. 

2) Analysis and Interpretations

K-means: Achieved the highest silhouette scores,

indicating a strong separation between clusters. This

suggests K-means is well-suited for our dataset, which

likely consists of well-defined, non-overlapping

regions.

EM: Moderate silhouette scores suggest a less 

effective fit for our data if it exhibits complexities like 

overlapping clusters or irregular shapes. 

Mean Shift: 

• Including location information resulted in poor

cluster separation. Spatial information might

introduce noise or redundancy for our data.

• Excluding location information led to a moderate

level of separation, suggesting density-based

clustering might be more effective for this data

without explicit spatial weighting.
DBSCAN: Silhouette scores varied with epsilon,
highlighting the challenge of balancing shape and
color segmentation with a single parameter. Some
epsilon values captured shapes well but missed
color details, while others struggled with clear fruit
boundaries.

3) Implications for Image Segmentation
Based on silhouette scores, K-means appears to be 
the most effective method for our well-defined 
clusters. However, consider these limitations and 
future explorations: 

 Limitations: 

• K-means: Requires careful selection of the

pre-defined number of clusters (K).

• EM: More computationally expensive and

requires parameter tuning for complex data.

• Mean Shift: Performance depends on data

characteristics and parameter settings.

• DBSCAN: Sensitive to epsilon value for

achieving both shape and color

segmentation.

Future Exploration: 

• K-means: Techniques for optimizing K

selection.

• EM: Investigate parameter tuning strategies

to improve performance.

• Mean Shift: Explore advanced variations for

specific density-based clustering needs.

• Advanced Algorithms: Experiment with

methods designed for complex data

structures.
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This comparison emphasizes the importance of evaluating 
various clustering methods based on your specific image 
segmentation task, data characteristics, and desired level of 
granularity in the results. The best choice depends on the 
unique qualities of your data and the segmentation goals. 

F. Visual Observations and Limitations

While definitive conclusions require a more extensive dataset, 
here are some initial observations from the K-means segmented 
images: 

• Setting the number of clusters (k) to 8 might be more
effective than k=6 in capturing color variations and
separating distinct regions within the image, especially for
objects like fruits with potential color variations due to
ripeness or sun exposure.

However, consider these limitations: 

• Compressed Image Size: Compressed images for

inclusion in the thesis might affect the clarity of color

representation in the segmented images. Analyzing

the segmentation results on the original image would

provide a more accurate assessment.

• Human Perception and Subjectivity: Visual

assessment can be subjective. While observing

clusters corresponding to distinct objects is

encouraging, a quantitative evaluation metric is

essential.

• Limitations of Silhouette Score: The silhouette score

offers a single perspective on segmentation quality,

focusing on intra-cluster similarity and inter-cluster

dissimilarity. Other aspects like boundary detection or

object detail preservation might not be fully captured.

1) Future Work Considerations
By addressing these limitations, future work can provide more 
comprehensive insights into K-means effectiveness: 

• Expanding the Dataset: Utilizing a broader dataset

with various complexities and a wider range of

relevant objects would enable a more robust

evaluation.

• Additional Evaluation Metrics: Complementing the

silhouette score with other metrics like Calinski-

Harabasz score or Rand index could provide a more

well-rounded assessment.

• Human Evaluation: If possible, incorporating human

evaluation alongside quantitative metrics could be

beneficial. Domain experts familiar with the objects

of interest could assess the accuracy and interpre
By addressing these limitations and incorporating a broader 
range of data and evaluation methods, future research can 
refine the understanding of K-means clustering effectiveness 
for image segmentation tasks within the chosen domain. 

G. Analysis and Discussion

This investigation explored the effectiveness of K-means 
clustering for image segmentation and the identification of an 
optimal number of clusters (k) using the image "zurag.jpg." 
The analysis employed a range of k values from 3 to 9. 

While the silhouette score analysis indicated K=6 as the value 
with the highest separation between clusters, visual quality is 
also crucial. K=8 appeared to capture color variations and 
separate distinct regions more effectively, particularly for 
objects like fruits. This suggests that for certain image 
characteristics, a higher number of clusters might be beneficial 
for detailed segmentation, even if the silhouette score doesn't 
necessarily reflect it as the optimal value. 

H. Conclusion:

Research Summary: This study investigates the effectiveness 
of K-means clustering for image segmentation, focusing on 
selecting the optimal number of clusters (k). Visual inspection 
suggested k=8 as suitable for capturing color variations in 
objects like fruits, but relying solely on visual assessment has 
limitations. Additional metrics like Gap Statistic, Calinski-
Harabasz Index, and silhouette score proposed k=9, k=8, and 
k=6, respectively. Choosing the most suitable metric depends 
on image characteristics and segmentation goals. 

Key Findings: A multidimensional approach combining visual 
inspection and quantitative metrics is crucial for evaluating 
clustering algorithms. Each metric offers unique insights into 
cluster quality, and no single metric should be relied upon 
exclusively. 

Implications & Recommendations: Practitioners should use a 
combination of visual inspection and quantitative metrics for 
selecting optimal clusters in image segmentation, considering 
data characteristics and segmentation objectives. 

Limitations & Future Directions: Limitations include a single 
dataset and subjective visual assessments. Future research 
should focus on expanding datasets, incorporating ground truth 
data, and exploring alternative clustering algorithms. 

Conclusion: This study provides insights into K-means 
clustering for image segmentation and optimal cluster 
selection. By combining visual inspection with quantitative 
metrics, we gain a better understanding of clustering algorithm 
performance. Continued research and innovation are vital for 
advancing clustering algorithms in image analysis and beyond. 

V. REFERENCES

[1] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of Careful 

Seeding,"2007.[Online].Available:
https://courses.cs.duke.edu/spring07/cps296.2/papers/kMeansPlusPlus.pdf. 

[2] L. KAUFMAN and P. J. ROUSSEEUW, "Finding Groups in Data An 
Introduction to Cluster Analysis," 2009. [Online]. Available: 
https://onlinelibrary.wiley.com/doi/epdf/10.1002/9780470316801.fmatter. 

[3] T. Calińsk and J. Harabasz, "A dendrite method for cluster analysis," 
1974.[Online].Available:
http://docode.techyoung.cn/calinski_harabasz/chi.pdf.

[4]  D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature
spaceanalysis,"IEEE,[Online].Available: 
https://ieeexplore.ieee.org/document/1000236. [Accessed 2002].

[5] D. L. Davies and D. W. Bouldin, "A Cluster Separation Measure," IEEE, 
1979. [Online]. Available: https://ieeexplore.ieee.org/document/4766909. 

[6] A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum Likelihood 

from Incomplete Data via the EM Algorithm," 
https://www.ece.iastate.edu/, 1977. [Online]. Available: 
https://www.ece.iastate.edu/~namrata/EE527_Spring08/Dempster77.pdf. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

IJERTV13IS040316

Vol. 13 Issue 4, April 2024

www.ijert.org
www.ijert.org


[7] M. Ester, H. P. Kriegel,, J. Sander and X. Xu, "Density-Based Algorithm for 

Discovering Clusters in Large Spatial Databases with Noise," www.aaai.org, 
1996. [Online]. Available: https://cdn.aaai.org/KDD/1996/KDD96-037.pdf. 

[8] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Research gate, 

2015. [Online]. Available: file:///C:/Users/shine/Downloads/2015-
lecun.pdf. 

[9] R. Tibshirani, G. Walther and T. Hastie, "Estimating the number of 
clusters in a data set via," Journal of the Royal Statistical Society, 2001. 

[Online].Available:
https://academic.oup.com/jrsssb/article/63/2/411/7083348.

[10] P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and 

validation of cluster analysis," sciencedirect, 1987. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/0377042787901257.

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

IJERTV13IS040316

Vol. 13 Issue 4, April 2024

www.ijert.org
www.ijert.org



